Chem. Ber. 111, 3530-3541 (1978)

Übergangsmetall-Carbin-Komplexe, XXXIX¹⁾

Synthese, Struktur und elektrochemisches Verhalten von trans-Halogenotetracarbonyl(ferrocenylcarbin)-Komplexen des Chroms, Molybdäns und Wolframs

Ernst Otto Fischer*, Monika Schluge, Jürgen Otto Besenhard, Peter Friedrich, Gottfried Huttner und Fritz Roland Kreißl

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 24. Januar 1978

Die Umsetzung der Pentacarbonyl(ethoxyferrocenylcarben)-Komplexe von Chrom, Molybdän und Wolfram mit Bor- bzw. Aluminiumhalogeniden (MX_3 mit X = Cl, Br) führt bei tiefer Temperatur zu *trans*-Halogenotetracarbonyl(ferrocenylcarbin)-Verbindungen (1-5). Durch eine Halogenaustauschreaktion an den *trans*-Bromotetracarbonyl(ferrocenylcarbin)-Komplexen mit LiI gelangt man zu den Iodhomologen 6, 7. Ergebnisse der spektroskopischen und elektrochemischen Untersuchungen der neuartigen Verbindungen sowie die Röntgenstrukturanalyse von 2 werden mitgeteilt.

Transition Metal Carbyne Complexes, XXXIX¹⁾

Synthesis, Structure, and Electrochemical Behavior of *trans*-Halogenotetracarbonyl-(ferrocenylcarbyne) Complexes of Chromium, Molybdenum, and Tungsten

The reaction of pentacarbonyl(ethoxyferrocenylcarbene) complexes of chromium, molybdenum, and tungsten with boron- and aluminium halides $(MX_3; X = Cl, Br)$ at low temperatures yields *trans*-halogenotetracarbonyl(ferrocenylcarbyne) complexes (1-5). The analogous iodo complexes (6, 7) are obtained by a halogen exchange reaction of the *trans*-bromotetracarbonyl(ferrocenylcarbyne) complexes with lithium iodide. The results of spectroscopic and electrochemical measurements of the novel complexes together with the X-ray structure of 2 are reported.

Präparative Ergebnisse

Pentacarbonyl(ethoxyferrocenylcarben)chrom, -molybdän und -wolfram reagieren mit Aluminiumhalogeniden Al_2X_6 (X=Cl, Br) in Methylenchlorid unter Abspaltung der Ethoxygruppe sowie eines CO-Liganden und gleichzeitigem Einbau eines Halogenatoms zu *trans*-Halogenotetracarbonyl(ferrocenylcarbin)-Komplexen. Das zunächst gebildete Addukt aus Carbinverbindung und Aluminiumhalogenid wird durch Zugabe von Methanol zerstört, wobei auch überschüssiges Al_2X_6 hydrolysiert. Die Darstellung von *trans*-Tetracarbonylchloro(ferrocenylcarbin)chrom (1) gelang mit Al_2Cl_6 nicht, hier führte BCl₃ zum Erfolg.

¹⁾ XXXVIII. Mitteil.: E. O. Fischer und A. Däweritz, Chem. Ber. 111, 3525 (1978), vorstehend.

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1978

Durch Umsetzung der Verbindungen 2 bzw. 5 mit Lithiumiodid bei -20° C erhält man die Iodhomologen 6 und 7.

 $(CO)_{5}Cr = C \xrightarrow{OC_{2}H_{5}}_{Fc} + BCl_{3} \xrightarrow{Pentan} Cl - Cr(CO)_{4}C - Fc + CO + \dots$ I $(CO)_{5}M = C \xrightarrow{OC_{2}H_{5}}_{Fc} + Al_{2}X_{6} \xrightarrow{1)CH_{2}Cl_{2}}_{2)CH_{3}OH} X - M(CO)_{4}C - Fc + CO + \dots$ 2 - 5 $Fc = C_{5}H_{4}FeC_{5}H_{5} \xrightarrow{1} \frac{1}{M} \xrightarrow{Cr} Cr Mo W W}_{X} Cl Br Br Cl Br$ $Br - M(CO)_{4}C - Fc + LiI \xrightarrow{Ether}_{-LiBr} I - M(CO)_{4}C - Fc \qquad 6: M = Cr$ 7: M = W

Die diamagnetischen roten Komplexe 1-7 lösen sich gut in Aceton, Ether und CH_2Cl_2 , nur wenig dagegen in unpolaren Kohlenwasserstoffen. Ihre thermische Stabilität nimmt in der Reihenfolge W > Cr > Mo und I > Br > Cl ab. Während $I-W(CO)_4C-Fc$ (7) in Festsubstanz und sehr reinem Zustand selbst an Luft bei Raumtemp. einige Stunden stabil ist, zersetzt sich $Br - Mo(CO)_4C - Fc$ (3) bereits nach wenigen Minuten. $Cl - Cr(CO)_4C - Fc$ (1) ist so reaktiv, daß es sich in pulvriger Form an Luft von selbst entzündet. Beim Erwärmen in einer zugeschmolzenen Kapillare zersetzen sich alle Komplexe ohne zu schmelzen.

Spektroskopische Untersuchungen

Die *IR-Spektren* der Ferrocenylcarbin-Verbindungen 1–7 in Lösung zeigen im v_{CO} -Bereich jeweils zwei Absorptionen, eine sehr intensive Bande zwischen 2018 und 2034 cm⁻¹ und eine von schwacher Intensität zwischen 2096 und 2116 cm⁻¹ (Tab. 1). Anzahl und Intensitätsverhältnis der Absorptionen in Verbindung mit den Elementaranalysen sprechen eindeutig für das Vorliegen *trans*-disubstituierter Tetracarbonylverbindungen (CO)₄ML¹L² mit L¹ \neq L². Die Bande bei tieferer Wellenzahl kann somit der E-, diejenige bei höherer Frequenz der A₁-Schwingung zugeordnet werden.

Wie Tab. 1 zeigt, verändert sich die Lage der v_{CO} -Absorptionen bei gleichbleibendem Zentralmetall und Variation des Halogens kaum, etwas stärker wirkt sich ein Wechsel des ersteren aus.

Stellt man die hier ermittelten v_{CO} -Werte denjenigen der entsprechenden $X - M(CO)_4C - C_6H_5$ -Komplexe²⁾ von Chrom, Molybdän und Wolfram gegenüber, so folgt für die Ferrocenylgruppe ein stärkerer Elektronenschub als für den Phenylrest. Vergleichbare Absorptionswerte liegen bei *p*-Dimethylaminophenylcarbin-Komplexen vor³⁾.

²⁾ E. O. Fischer, G. Kreis, C. G. Kreiter, J. Müller, G. Huttner und H. Lorenz, Angew. Chem. 85, 618 (1973); Angew. Chem., Int. Ed. Engl. 12, 564 (1973); E. O. Fischer und G. Kreis, Chem. Ber. 109, 1673 (1976).

³⁾ E. O. Fischer, A. Schwanzer, H. Fischer, D. Neugebauer und G. Huttner, Chem. Ber. 110, 53 (1977).

X – M	Komplex	A_i	Ε
Cl-Cr	1	2101 w	2028 vs
Br – Cr	2	2101 w	2030 vs
I – Cr	6	2096 w	2028 vs
Br – Mo	3	2116 w	2034 vs
Cl-W	4	2111 w	2018 vs
Br - W	5	2112 w	2020 vs
I - W	7	2107 w	2020 vs

Tab. 1. v_{co} -Schwingungen der X – M(CO)₄C – Fc-Komplexe 1 – 7 in CH₂Cl₂ (cm⁻¹)

Auffallend ist, daß die A₁-Schwingungen der Chromverbindungen alle bei niedrigeren Wellenzahlen, die E-Schwingungen dagegen bei höheren Frequenzen erscheinen als die der analogen Wolframcarbinkomplexe. Eine Erklärung für diese Tatsache, die bereits bei Carbinverbindungen mit substituierten Phenylcarbinresten beobachtet wurde³⁾, scheint darin zu liegen, daß bei den Wolframkomplexen die gegenseitigen Wechselwirkungen der CO-Gruppen stärker ausgeprägt sind als bei den Chromverbindungen. Das kann dann zu differierender Beeinflussung von Schwingungen verschiedener Symmetrie (A₁ und E) führen. Die unterschiedlich starke Wechselwirkung ist darauf zurückzuführen, daß mit steigendem Atomradius und damit voluminöseren d-Orbitalen des Zentralmetalls die Überlappung mit den π -Orbitalen der CO-Liganden vergrößert wird.

Die ¹*H-NMR-Spektren* der Verbindungen 1-7 zeigen in $[D_6]$ Aceton alle ein Singulett für den unsubstituierten Cyclopentadienylring und je zwei Multipletts, die den Protonen des am Carbinkohlenstoff gebundenen Fünfringes zugeordnet werden (Tab. 2).

	¹ H-NMR, $[D_6]$ Aceton, -30° C			¹³ C-NMR, CD_2Cl_2 , -30°C (3 bei -60°C)					
X – M		C5H5 (s, 5H)	C (m, 2 H)	₃ H ₄ (m, 2H)	C_{Carbin}	CO	C ₁ (A)	$C_{2-5}(A)$	C(B)
Cl-Cr	1	4.65	4.70	5.17	_	_	_	_	_
Br-Cr	2	4.66	4.76	5.25	322.03	208.54	89.76	73.15 72.17	71.31
I-Cr	6	4.66	4.73	5.25	322.57	207.68	89.44	72.93 72.39	71.42
Br – Mo	3	4.67	4.61	5.09	293.66	198.94	86.20	72.71 71.74	70.88
C1 – W	4	4.58	4.60	4.92	276.18	194.73	89.97	72.71 71.42	70.77
Br – W	5	4.58	4.60	5.00	275.10	193.44	89.54	72.71 71.63	70.99
I - W	7	4.59	4.65	5.08	272.73	190.85	88.36	72.39 71.74	70.99

Tab. 2. ¹H- und ¹³C-NMR-Spektren der Carbinkomplexe $X - M(CO)_4C - Fc \ 1-7$ (δ -Werte, bezogen auf int. TMS bzw. auf CD₂Cl₂ mit $\delta = 54.2$)

Die ${}^{13}C$ -NMR-Spektren von 2-7 zeigen das für Carbinkomplexe zu erwartende Bild. 1 war für die Messung zu labil. Zur Unterscheidung der Ringkohlenstoffatome in Tab. 2 gilt das in A angegebene Schema.

Aufgrund der Verschiebung der C_{Carbin} und C_{CO} -Signale können die Ferrocenylcarbinkomplexe recht gut mit Br $-M(CO)_4C - C_6H_2(CH_3)_3$ -(2,4,6) von Chrom und Wolfram verglichen werden³⁾.

Die freie Drehbarkeit des nur π -gebundenen Cyclopentadienylringes B kann man daran erkennen, daß die zugehörigen Kohlenstoffatome nur als ein Signal erscheinen. Damit im Einklang stehen auch die Ergebnisse der ¹H-NMR-Spektren. Der zusätzlich am C_{Carbin}-gebundene Ring A ergibt drei Signale.

Die Änderung des Zentralmetalls wirkt sich am stärksten auf die elektronische Umgebung des Carbinkohlenstoffatoms aus. Bei den Wolframkomplexen ist zusätzlich eine geringfügige Verschiebung der C_{Carbin} -Resonanz zu höheren Feldstärken mit schwerer werdendem Halogen zu beobachten.

Massenspektren: Von den Verbindungen 1-4 ließen sich aufgrund ihrer thermischen Instabilität keine Massenspektren erhalten. Bei den übrigen Komplexen, den Iodverbindungen 6, 7 und dem Bromhomologen von Wolfram 5 konnten die Molekül-Ionen M^+ beobachtet werden.

Zufolge Tab. 3 weisen die Chromverbindungen die üblichen vom M⁺-Peak ausgehenden stufenweisen Abspaltungen der vier CO-Liganden auf, wobei der $[M - 4CO]^+$ -Peak derjenige mit der höchsten Intensität ist. Die Wolframverbindungen spalten zunächst zwei CO-Moleküle nacheinander und dann die restlichen zwei praktisch gleichzeitig ab $[m^*(516 \rightarrow 460) = 410.1; m^*(564 \rightarrow 508) = 457.6].$

X – M	Komplex	M+	[M – CO] ⁺	[M - 2CO] ⁺	[M - 3CO]+	[M - 4CO] ⁺
I – Cr	6	488	460	432	404	376
$\mathbf{Br} - \mathbf{W}$	5	572	544	516	→	460
I - W	7	620	592	564		508

Tab. 3. Massenspektren der Komplexe $X - M(CO)_4C - Fc 5-7$, *m/e*-Werte, bezogen auf ⁷⁹Br, ¹⁸⁴W, ⁵⁶Fe und ⁵²Cr

Röntgenstrukturanalyse von $Br - Cr(CO)_4C - C_5H_4FeC_5H_5$ (2)

2, Molmasse 441.0, orthorhombisch, Raumgruppe $P 2_1/2_1/2_1$, a = 995 (1), b = 1184 (2), c = 1422 (2) pm, V = 1676 (5) × 10⁶ pm³, Z = 4, $d_{gem.} = 1.71$ (8), $d_{ber.} = 1.748$ (9) gcm⁻³. Die Bestimmung der Zellkonstanten und die Sammlung der Beugungsdaten (756 Reflexe, $I \ge 3\sigma$) erfolgten auf einem Vierkreisdiffraktometer (Syntex P 2_1 , $\lambda_{Mo-K_{\alpha}} = 71.069$ pm, Graphit-Monochromator). Die Struktur wurde mit konventionellen Methoden gelöst (Strukturlösungsgerät Syntex-XTL). Die Verfeinerung mit voller Matrix führte zu R = 0.054. Wasserstofflagen wurden nicht bestimmt.

Die Lageparameter sowie die wichtigsten Abstände und Winkel des untersuchten Chromferrocenylcarbin-Komplexes sind in Tab. 4 zusammengestellt. Die Struktur von 2 steht im Einklang mit den spektroskopischen Ergebnissen an gelöstem 2 und zeigt den für die Verbindungsklasse typischen Bau (Abb. 1).

Abb. 1. Molekülstruktur von $Br - Cr(CO)_4C - C_5H_4FeC_5H_5$ (2)

Das annähernd oktaedrisch koordinierte Chromatom ist in *trans*-Stellung zum Bromliganden über das Carbin-Kohlenstoffatom C 5 an einen der Cyclopentadienylliganden des Ferrocenylrestes gebunden.

Die Cr-Br-Bindungslänge ist mit 257.7 (3) pm wie in anderen *trans*-Bromotetracarbonylcarbin-Chromkomplexen $[Br-Cr(CO)_4C-C_6H_5, 256.7 (3) pm^{4});$ $Br-Cr(CO)_4C-C_6H_4CF_3$ -(p), 256.2 (4) pm^{3}] gegenüber einer Cr-Br-Einfachbindung (263 pm) verkürzt.

Der sehr kurze $Cr - C_{Carbin}$ -Abstand (171 (2) pm) liegt innerhalb von drei Standardabweichungen in dem bisher für Chrom-Carbin-Bindungslängen beobachteten Bereich⁵). Das Carbin-Kohlenstoffatom ist linear koordiniert; der $C_{Carbin} - C_{C_{SH_4}}$ -Abstand stimmt mit 140 (2) pm gut mit der Summe der Kovalenzradien sp- (69 pm) und sp²- (74 pm)^{6,7)}hybridisierter Kohlenstoffatome überein.

⁴⁾ A. Frank, E. O. Fischer und G. Huttner, J. Organomet. Chem., im Erscheinen.

⁵⁾ G. Huttner, A. Frank und E. O. Fischer, Isr. J. Chem. 15, 133 (1977).

⁶⁾ G. Huttner und H. Lorenz, Chem. Ber. 108, 1864 (1975).

⁷⁾ O. Bastiansen und M. Traetteberg, Tetrahedron 17, 147 (1962).

A	tom	X/a	(SD)	Y/b	(SD)	Z/c	(SD)	В	(SD)
F	Fe	0.4376	(3)	0.5590	(2)	0.8664	(2)		
(Cr	0.0859	(3)	0.2975	(2)	0.8312	(2)		
E	3r	-0.1369	(2)	0.1943	(2)	0.8650	(2)		
(C1	-0.021	(2)	0.400	(2)	0.757	(1)	4.8	(5)
(22	0.172	(2)	0.179	(2)	0.907	(1)	5.2	(5)
(23	0.111	(2)	0.210	(2)	0.720	(1)	4.4	(4)
(24	0.047	(2)	0.385	(2)	0.942	(1)	4.3	(4)
0	D1	-0.089	(1)	0.456	(1)	0.710	(1)	6.0	(3)
0	2	0.224	(1)	0.111	(1)	0.952	(1)	5.7	(3)
0	3	0.132	(1)	0.157	(1)	0.650	(1)	6.6	(3)
0	04	0.034	(2)	0.447	(1)	1.008	(1)	8.0	(4)
0	25	0.237	(2)	0.363	(2)	0.815	(1)	3.5	(4)
0	251	0.365	(2)	0.409	(1)	0.805	(1)	3.3	(4)
0	252	0.478	(2)	0.387	(1)	0.866	(1)	3.8	(4)
(253	0.596	(2)	0.452	(2)	0.830	(1)	5.1	(4)
0	254	0.552	(2)	0.521	(2)	0.747	(1)	5.8	(5)
0	255	0.408	(2)	0.495	(2)	0.731	(1)	4.0	(4)
0	C61	0.378	(2)	0.600	(2)	1.001	(1)	6.0	(5)
(C62	0.285	(2)	0.643	(2)	0.935	(2)	6.5	(6)
(263	0.356	(2)	0.720	(2)	0.870	(2)	6.7	(5)
0	264	0.490	(2)	0.723	(2)	0.896	(2)	7.2	(6)
C	265	0.503	(2)	0.644	(2)	0.982	(2)	6.7	(6)
Atom	<i>B</i> ₁₁	(SD) B_{22}	(SD)	B ₃₃ (SD)	B ₁₂	(SD)	B ₁₃ (SD)	E	B ₂₃ (SD)
Fe	3.9	(1) 3.2	(1)	3.3 (1)	-0.6	(1)	0.0 (1)		0.3 (1)
Cr	3.5	(1) 3.3	(1)	3.1 (1)	- 0.3	(1)	0.2 (1)	-	0.3 (1)
Br	3.7	(1) 4.9	(1)	6.3 (1)	- 1.0	(1)	-0.2 (1)		0.8 (1)

Tab. 4. Atomparameter: Lageparameter, isotrope und anisotrope Temperaturfaktoren von 2^{a, b, c)}

Die wichtigsten innermolekularen Abstände und Winkel von 2^{a)}

Atome	Abstand (pm)	Atome	Winkel (°)	Atome	Winkel (°)
Cr - Br Cr - C1 Cr - C2 Cr - C3 Cr - C4 Cr - C5 C1 - O1 C2 - O2 C3 - O3 C4 - O4 C5 - C51 Fe - Ccp(C2 Fe - Ccp(C2 Fe - Ccp(C2 C2 - C4 C2 - C4 C5 - C51 Fe - Ccp(C2 Fe - Ccp(C2 C4 - C4 C5 - C51 Fe - Ccp(C2 Fe - Ccp(C2 C4 - C4 C5 - C51 Fe - Ccp(C2 Fe - Ccp(C2 Fe - C4 C5 - C51 Fe - Ccp(C2 Fe - C4 C5 - C51 Fe - C5 C6 C6 - C4 C7 - C5 C1 - O1 C2 - O2 C3 - O3 C4 - O4 C5 - C51 Fe - Ccp(C2 Fe - C5 C6 C6 C6 C7 - C7 C7 - C7 - C7 C7 - C7 C7 - C7 C7 - C7 C7 - C7 - C7 C7 - C7 C7 - C7 - C7 - C7 C7 -	$\begin{array}{c} 257.7 (3) \\ 193 (2) \\ 197 (2) \\ 191 (2) \\ 193 (2) \\ 171 (2) \\ 116 (3) \\ 115 (2) \\ 119 (2) \\ 119 (2) \\ 140 (2) \\ 51 - C55) 207 - 51 - C65) 204 - 251 - C55) 144 - 251 - 251 - 255 - 201 - 251 - 255) 144 - 251 - 255 - 201 - 255$	$\begin{array}{c} Br - Cr - C1 \\ Br - Cr - C2 \\ Br - Cr - C3 \\ Br - Cr - C3 \\ Br - Cr - C5 \\ C1 - Cr - C5 \\ C2 - Cr - C5 \\ C3 - Cr - C5 \\ C4 - Cr - C5 \\ C5 \\ C5 \\ C4 - Cr - C5 \\ C5 \\ C5 \\ C4 - Cr - C5 \\ C5$	85.9 (6) 86.2 (6) 90.6 (6) 86.1 (6) 176.9 (6) 96.8 (9) 91.1 (8) 91.0 (8) 92.4 (8) 1: 209 1: 206 1: 148	C1-Cr-C2 C3-Cr-C4 Cr-C5-C51 Cp-Ringe 106-	172.0 (9) 176.0 (8) 175.1 (15) 109 (2)

^{a)} Die eingeklammerten Zahlen bezeichnen die Standardabweichung in Einheiten der letzten Dezimalstelle.

^{b)} Temperaturfaktoren in 10⁴ pm². ^{c)} Die Temperaturfaktoren sind definiert durch den Ausdruck:

 $T = \exp\left[-\frac{1}{4}\left(h^2 a^{*2} B_{11} + k^2 b^{*2} B_{22} + l^2 c^{*2} B_{33} + hka^* b^* B_{12} + hla^* c^* B_{13} + klb^* c^* B_{23}\right)\right].$

Е.	0.	Fischer	et	al.
----	----	---------	----	-----

Das Koordinationsoktaeder am Chromatom ist geringfügig aber offenbar systematisch verzerrt: Die äquatorialen Cr-C-Bindungen bilden mit der Cr-Br-Achse Winkel, die im Mittel kleiner als 90° sind; daher liegt das Chromatom 10 pm über der durch die Carbonylkohlenstoffatome aufgespannten Ebene auf der Seite des Carbin-Kohlenstoffatoms. Der Ferrocenylrest enthält zueinander parallele ebene Ringliganden, die gegenüber der "eclipsed"-Anordnung um 12° gegeneinander verdreht sind. Die durch die Cyclopentadienylringe definierte Ebene bildet mit der Ebene der äquatorialen Carbonylgruppen einen Winkel von 95°; die fünfzählige Achse des Ferrocenylrestes bildet mit der Oktaederachse Cr-C4 einen Torsionswinkel von 19°. Der mittlere Fe- C_{Cp} -Abstand beträgt 207 pm. Die C_{Cp} - C_{Cp} -Bindungslängen schwanken innerhalb der Fehlergrenzen um einen Durchschnittswert von 146 pm⁸. Die Cr- C_{C0} -Abstände sind mit einem Mittel von 194 pm deutlich länger als die entsprechenden Abstände in Chromcarbonylcarben-Komplexen⁶). Ähnliche Beobachtungen an anderen Chromcarbonylcarbin-Komplexen wurden bereits früher mit dem durch den Carbinrest induzierten Elektronenmangel am Zentralatom in Zusammenhang gebracht⁵).

Elektrochemische Untersuchungen

In substituierten Ferrocenen RFc kann aus dem reversiblen Potential $E_{1/2}$ der Reaktion RFc = RFc⁺ + e⁻ auf den elektrophilen oder nucleophilen Charakter des Substituenten R geschlossen werden. Untersuchungen an einer großen Anzahl von Verbindungen RFc haben gezeigt, daß ein linearer Zusammenhang zwischen ihren $E_{1/2}$ -Werten und den Hammett-Konstanten σ_m und σ_p des Substituenten R besteht^{9,10}. Auch die ¹H- und ¹³C-NMR-Signale der Cyclopentadienyl-Ringe zeigen erwartungsgemäß mit steigendem Potential RFc/RFc⁺ eine Verschiebung zu tieferem Feld, d. h. abnehmende Elektronendichte in den Cyclopentadienyl-Ringen. Obwohl die Verbindungen 1 – 10 mehrere oxidierbare Zentren haben, kann ihre Einelektronen-Oxidation zu 1⁺ – 10⁺ sicher der Bildung substituierter Ferricinium-Kationen zugeordnet werden.

Die Elektronenaustauschgeschwindigkeiten in Redoxsystemen RFc/RFc⁺ sind im allgemeinen sehr hoch. Deshalb kann $E_{1/2}$ dieser schnellen Reaktionen sehr genau und praktisch frei von kinetischen Störungen ("Überspannung") gemessen werden. Die $E_{1/2}$ -Werte von 1–10 wurden cyclovoltammetrisch [an Pt, in 0.5 M KPF₆/DME (1,2-Dimethoxyethan), bei – 20°C, Konzentration $c = 2 \times 10^{-3}$ M, Polarisationsgeschwindigkeit $v = 100 \text{ mVs}^{-1}$] gegen HFc/HFc⁺ bestimmt. $E_{1/2}$ ergibt sich dabei als Schwerpunkt des anodischen und kathodischen Peakpotentials (E_{Pa} und E_{Pk}) nach $E_{1/2} = (E_{Pa} + E_{Pk})/2$.

Die Differenzen zwischen E_{Pa} und E_{Pk} der Ferrocenylcarbin-Komplexe **1–8** und der Ferrocenylcarben-Komplexe **9** und **10** waren dem Wert für HFc (in unserer Anordnung ca. 65 mV bei $v = 100 \text{ mVs}^{-1}$) praktisch gleich. Damit ist bestätigt, daß ebenso wie beim Ferrocen in allen Fällen reversible Einelektronen-Übergänge erfolgen. Der Quotient der Peakströme i_{Pk}/i_{Pa} bleibt auch bei kleinen v-Werten (25 mVs⁻¹) noch praktisch 1, so daß keine Anzeichen für eine Zersetzung der substituierten Ferricinium-Kationen $1^+ - 10^+$ bestehen.

⁸⁾ J. D. Dunitz, L. E. Orgel und A. Rich, Acta Crystallogr. 9, 373 (1956).

⁹⁾ G. L. K. Hoh, W. E. McEwen und J. Kleinberg, J. Am. Chem. Soc. 83, 3949 (1961).

¹⁰⁾ D. W. Hall und C. D. Russel, J. Am. Chem. Soc. 89, 2316 (1967).

Eine weitere, eindeutig reversible Oxidation der RFc^+ -Kationen konnte nicht mehr beobachtet werden. Der Carbinsubstituent R ist im hier untersuchten Potentialbereich noch nicht oxidierbar; so werden z. B. Carbin-Komplexe $X - W(CO)_4 \equiv C - C \equiv C - Ph$ (X = Cl, Br, I) erst bei Potentialen von +1.1 bis +1.4 V gegen HFc/HFc⁺ irreversibel oxidiert¹¹.

Tab. 5. Halbstufenpotentiale E_1	(mV gegen HFc/HFc	 sowie Hammett 	-Konstanten σ_m und σ_p
Ň	on Ferrocenyl-Verbindu	ingen RFc	

---- ---- 1.

Komplex	R	$E_{1/2}^{\ a)}$	$\sigma_m^{(b)}$	$\sigma_p^{(b)}$	$\sigma_p^{\ c)}$
4	$Cl - W(CO)_4C -$	+ 255	+0.41	+0.53	+0.54
5	$Br - W(CO)_4C -$	+270	+0.43	+0.57	+ 0.59
7	$I - W(CO)_4C -$	+285	+ 0.46	+0.60	+ 0.65
3	$Br - Mo(CO)_4C -$	+300	+0.48	+0.64	+0.65
1	$Cl - Cr(CO)_4C -$	+330	+0.53	+ 0.71	+0.71
2	$Br - Cr(CO)_4C$	+ 335	+0.54	+0.72	+0.76
6	$I - Cr(CO)_4C -$	+ 350	+ 0.56	+0.75	+ 0.76
8	π -C ₅ H ₅ W(CO) ₂ C-	+150	+ 0.25	+ 0.29	$+0.37^{d}$
9	$(CO)_5 CrC(OC_2H_5) -$	+ 310	+0.50	+ 0.66	$+0.60^{e}$
10	$(CO)_5WC(OC_2H_5)-$	+ 315	+0.51	+0.67	+ 0.61 °)

^{a)} $\pm 10 \, \text{mV}.$

^{b)} Berechnet aus $E_{1/2}$ -Werten nach Hoh, McEwen und Kleinberg⁹⁾.

^{c)} Berechnet aus ¹H-NMR-Daten nach Connor und Lloyd¹²⁾.

^{d)} -20° C in CD₂Cl₂¹³⁾.

^{e)} Bei Raumtemp. in [D₆]Aceton.

Alle in Tab. 5 aufgeführten Komplexe sind schwerer oxidierbar als Ferrocen, wie es aufgrund der elektronenziehenden Wirkung der Carben- bzw. Carbingruppen im Rest R zu erwarten ist. In der Reihe der *trans*-Halogenoferrocenylcarbin-Komplexe 1-7 X-M(CO)₄C-Fc steigt $E_{1/2}$ vom W zum Cr deutlich an, während bei den Ethoxy-ferrocenylcarben-Komplexen 9 und 10 kein Einfluß des Metalls auf $E_{1/2}$ feststellbar ist. Ein direkter Beitrag des im Vergleich zu Cr größeren Elektronenangebots des W zu der Elektronendichte im Fc-Rest ist daher nicht anzunehmen. Vielmehr scheint die elektronenziehende Wirkung der Halogene beim kleineren Cr aufgrund der besseren Orbitalüberlappung wesentlich stärker zum Ausdruck zu kommen als beim Wolfram.

Aus ¹H-NMR-Spektren von Ferrocenylcarben-Komplexen wurde bereits von *Connor* und *Lloyd* die Hammettsche σ_p -Konstante des Substituenten ermittelt ¹²). Mit den dort angegebenen empirischen Faktoren ergeben sich für die Verbindungen 1–10 σ_p -Werte, die mit den aus $E_{1/2}$ berechneten im allgemeinen gut übereinstimmen (vgl. Tab. 5). Ganz allgemein bestätigen die hohen positiven Werte für σ_m und σ_p den stark elektronenziehenden Einfluß der Carbin- und Carbensubstituenten.

¹¹⁾ H. J. Kalder, Dissertation, Technische Univ. München 1976.

¹²⁾ J. A. Connor und J. P. Lloyd, J. Chem. Soc., Dalton Trans. 1972, 1470.

¹³⁾ E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, F. R. Kreißl und J. O. Besenhard, Chem. Ber. 110, 3397 (1977).

Abb. 2. Mittlere chemische Verschiebung δ der Protonen im substituierten (A) und unsubstituierten (B) Cyclopentadienylring gegen das Halbstufenpotential $E_{1/2}$ in Ferrocenyl-Verbindungen RFc

Bei den Ferrocenylcarbin-Komplexen besteht ein praktisch linearer Zusammenhang zwischen $E_{1/2}$ und den chemischen Verschiebungen δ der Protonen im unsubstituierten Cyclopentadienyl-Ring (B) sowie den 2,5- und 3,4-Protonen im substituierten Ring (A). In allen Fällen beobachtet man mit steigendem $E_{1/2}$ eine Verschiebung zu tieferem Feld. Eine entsprechende Verschiebung tritt auch bei den ¹³C-NMR-Signalen der Cyclopentadienyl-Ringe auf, allerdings sind dort die relativen Änderungen sehr klein und damit wenig signifikant. In Abb. 2 wurde der Mittelwert δ der chemischen Verschiebungen $\delta_{2,5}$ und $\delta_{3,4}$ im A-Ring sowie die chemische Verschiebung im B-Ring gegen $E_{1/2}$ aufgetragen. Auffallend ist, daß in den Ferrocenylcarbinen 1-8 offensichtlich eine starke Kopplung zwischen dem A-Ring und dem B-Ring besteht, d. h. daß auch aus dem unsubstituierten B-Ring eine erhebliche Elektronendichte abgezogen wird. Sehr viel geringer ist diese Kopplung in den Ferrocenylcarbenen 9 und 10, aber auch in anderen substituierten Ferrocenen RFc, z. B. mit $R = CH_3CO$ und $CO_2CH_3^{(14)}$. Offensichtlich können die Cyclopentadienyl-π-Orbitale mit dem p₂-Orbital vom sp²-Kohlenstoff gut überlappen, wobei mesomer Elektronendichte vorwiegend vom A-Ring abgezogen wird. Connor und Lloyd¹²) haben für Ferrocenylcarbene aus ¹H-NMR-Daten extrem hohe positive

¹⁴⁾ S. A. Butter und H. C. Beachell, Inorg. Chem. 5, 1820 (1966).

3539

 σ_R -Werte gefunden, so daß nach einer Aufteilung von σ_p in die induktive Komponente σ_1 und die mesomere Komponente σ_R nach $\sigma_p = \sigma_1 + \sigma_R \det \sigma_1$ -Wert nahe 0 oder negativ war.

Für die Ferrocenylcarbine, bei denen auch aus dem B-Ring viel Elektronendichte abgezogen wird, ergäben sich nach dieser Methode σ_{R} -Werte nahe 0, d. h. ein fast rein induktiver Elektronenzug der Carbingruppe, was jedoch der Erfahrung widerspricht.

Neben dem Effekt des Metalls auf $E_{1/2}$ der trans-Halogenotetracarbonylferrocenylcarbine 1–7 läßt sich auch ein – freilich sehr geringer – Effekt des Halogens beobachten. Überraschenderweise werden die Verbindungen vom Cl zum I hin schwerer oxidierbar, obwohl eigentlich für Cl der stärkste Elektronenzug zu erwarten wäre. Röntgenographische Untersuchungen haben nun gezeigt, daß bei Metallcarbin-Komplexen in der Reihe Cl > Br > I ein abnehmender Doppelbindungsanteil zum Metall vorliegt, so daß dieser bei I am schwächsten zur Auswirkung kommen dürfte⁵¹. Wir sehen darin die Erklärung des überraschenden Befundes. Ganz allgemein sollten wohl kleine Unterschiede der $E_{1/2}$ -Werte nur zurückhaltend interpretiert werden, da auch Einflüsse der Elektrolytlösung (z. B. Solvatation von RFc⁺) zu beachten sind und daher nicht nur mit Blick auf den Substituenten R interpretiert werden darf.

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, sowie der BASF Aktiengesellschaft, Ludwigshafen, für wertvolle Unterstützung dieser Untersuchung.

Experimenteller Teil

IR-Spektren: Perkin-Elmer-Spektrometer, Modell 21 (LiF-Prisma). – ¹H-NMR-Spektren: Varian A 60 bzw. Jeol C-60 HL-Gerät. – ¹³C-NMR-Spektren: Bruker HFX-90 bei 22.63 MHz. – Massenspektren: Atlas-CH 4-Gerät, Ionenquelle TO 4, Ofenschiffchen.

Alle Umsetzungen wurden unter Ausschluß von Luft und Feuchtigkeit in Stickstoffatmosphäre durchgeführt. Die Lösungsmittel waren getrocknet (Natrium, Tetraphosphordecaoxid) und stickstoffgesättigt. Das zur Chromatographie verwendete Kieselgel (Fa. Merck, Darmstadt, 0.06-0.20 mm) wurde bei Raumtemp. i. Hochvak. getrocknet. Die Kristalle für die Röntgenstrukturuntersuchung wurden durch langsames Abkühlen einer gesättigten Lösung von 2 in absol. Diethylether auf Trockeneistemp. erhalten.

Pentacarbonyl(ethoxyferrocenylcarben)chrom $(9)^{15}$, Pentacarbonyl(ethoxyferrocenylcarben)wolfram $(10)^{12}$ und *trans*-Bromotetracarbonyl(ferrocenylcarbin)wolfram $(5)^{16}$ wurden nach Literaturangaben dargestellt. Pentacarbonyl(ethoxyferrocenylcarben)molybdän konnte analog Lit.¹⁵ gewonnen werden.

1. Pentacarbonyl(ethoxyferrocenylcarben)molybdän: Eine Lösung von Ferrocenyllithium in THF¹⁷, dargestellt durch Umsetzung von 9.0 g (50 mmol) Ferrocen mit 30 ml 1.7 N n-Butyllithium, wird unter Rühren zu 7.9 g (30 mmol) Hexacarbonylmolybdän in 400 ml THF getropft. Nach 3 stündigem Rühren entfernt man das Lösungsmittel. Das rotbraune Produkt wird in 50 ml CH₂Cl₂ bei -10° C aufgenommen und mit 9.5 g (50 mmol) Triethyloxonium-tetrafluoroborat¹⁸) in 50 ml CH₂Cl₂ versetzt. Man rührt 1/2 h und filtriert dann durch eine auf -78° C gekühlte kurze Kieselgelschicht. Nach Abziehen des Lösungsmittels verbleibt ein schwarzrotes Produkt, welches in Pentan aufgenommen und auf Kieselgel bei -30° C chromatographiert wird. Pentan wird solange

¹⁵⁾ G. A. Moser, E. O. Fischer und M. D. Rausch, J. Organomet. Chem. 27, 379 (1971).

¹⁶⁾ E. O. Fischer, M. Schluge und J. O. Besenhard, Angew. Chem. **88**, 719 (1976); Angew. Chem., Int. Ed. Engl. **15**, 683 (1976).

¹⁷⁾ S. I. Goldberg, L. H. Keith und T. S. Prokopov, J. Org. Chem. 28, 850 (1963).

¹⁸⁾ H. Meerwein, G. Hinz, P. Hofmann, E. Kroning und E. Pfeil, J. Prakt. Chem. 147, 257 (1937).

als Laufmittel verwendet, bis die zwei ersten Zonen, die Ferrocen und $(CO)_5MoC(OC_2H_5)C_4H_9$ enthalten, abgetrennt sind. Die verbleibende dunkelrote Zone wird mit CH_2Cl_2 eluiert, zur Trockne gebracht und der Rückstand aus Pentan umkristallisiert. Schwarzrote Kristalle; Zers. ab 85°C. Ausb. 5.0 g (35%, bez. auf Mo(CO)₆).

IR (n-Hexan): v_{CO} 2058, 1974, 1943, 1934 cm⁻¹. – ¹H-NMR ([D₆]-Aceton, rel. int. TMS): $\delta = 5.18$ (q; 2H, OCH₂), 5.01 (m; 4H, C₅H₄), 4.37 (s; 5H, C₅H₅), 1.65 (t; 3H, CH₃). – ¹³C-NMR ([D₈]THF, bez. auf [D₈]THF mit $\delta = 67.32$): $\delta = 319.23$ (C_{Carben}); 213.51 (CO_{trans}); 207.35 (CO_{cis}); 94.30, 76.06 und 73.69 (C₅H₄); 71.42 (C₅H₅); 78.33 (OCH₂) und 15.54 (CH₃).

 $\begin{array}{c} C_{18}H_{14}FeMoO_6 \ (478.1) & \text{Ber. C } 45.22 \ H \ 2.95 \ Fe \ 11.86 \ Mo \ 20.06 \ O \ 20.07 \\ & \text{Gef. C } 44.95 \ H \ 3.03 \ Fe \ 11.39 \ Mo \ 19.66 \ O \ 19.60 \\ & \text{Molmasse } 480 \ (MS, \ bez. \ auf \ ^{98}Mo) \end{array}$

2. trans-Tetracarbonylchloro (ferrocenylcarbin) chrom (1): In ein Schlenkrohr, das auf -196° C gekühlt ist, kondensiert man 5 min BCl₃ ein und gibt dann nacheinander 20 ml Pentan, 1.2 g (3 mmol) (CO)₅CrC(OC₂H₅)Fc¹⁵⁾ in Festsubstanz und zum Schluß nochmals 50 ml Pentan zu. Anschließend läßt man das Reaktionsgemisch unter starkem Rühren erwärmen und rührt, sobald die Gasentwicklung eingesetzt hat, die braunrote Suspension noch 1 h bei -15° C. Nach Beendigung der Reaktion kühlt man zur vollständigen Ausfällung des gebildeten Carbinkomplexes auf -80° C und dekantiert die überstehende Lösung. Das Rohprodukt wird zur Entfernung des leichtflüchtigen BCl₃ noch zweimal mit je 10 ml Pentan gewaschen und anschließend bei -30° C getrocknet. Die Reinigung erfolgt durch Chromatographie in Pentan/CH₂Cl₂ (1:1) auf Kieselgel bei -35° C. Das bei der Reaktion durch Zersetzung stets entstehende Cr(CO)₆ sowie eventuell unumgesetzter Ausgangscarbenkomplex lassen sich im Vorlauf abtrennen. Die Carbinverbindung 1 wird mit CH₂Cl₂/Ether (7:1) eluiert und durch Abziehen des Lösungsmittels i. Hochvak. bei -30° C und anschließendes zweimaliges Waschen mit Pentan bei -80° C als hellrotes Kristall-pulver erhalten. Zers. ab 20°C, Ausb. 0.35 g (30%).

C15H9ClCrFeO4 (396.5) Ber. C 45.43 H 2.29 Gef. C 46.10 H 2.60

3. trans-Bromotetracarbonyl(ferrocenylcarbin)chrom (2): Zu einer Lösung von 1.2 g (3 mmol) (CO)₅CrC(OC₂H₅)Fc¹⁵⁾ in 70 ml CH₂Cl₂ gibt man bei -78 °C spatelweise 1.18 g (2.25 mmol) Al₂Br₆. Man erwärmt, bis Gasentwicklung eintritt, rührt die inzwischen himbeerrote Lösung noch weitere 40 min bei -15 °C und tropft anschließend bei -78 °C ca. 10 ml Methanol langsam zu. Reinigung des Produkts wie bei 2. Rotes Kristallpulver, Zers. ab 70 °C, Ausb. 0.80 g (70%).

4. trans-Tetracarbonyl(ferrocenylcarbin)iodochrom (6): 0.40 g (3 mmol) Lithiumiodid in 25 ml Ether werden bei -20 °C zu einer Lösung von 0.80 g (2 mmol) 2 in 50 ml Ether getropft. Während man 1 h rührt, trübt sich das Reaktionsgemisch durch ausfallendes Lithiumbromid. Aufarbeitung wie bei 2. Rotes Kristallpulver, Zers. ab 70 °C, Ausb. 0.87 g (90%).

 $C_{15}H_9CrFeIO_4$ (488.0) Ber. C 36.92 H 1.86 Cr 10.65 Fe 11.44 I 26.01 O 13.11 Gef. C 37.14 H 1.86 Cr 10.20 Fe 11.67 I 26.00 O 13.80 Molmasse 488 (MS, bez. auf ⁵²Cr)

5. trans-Bromotetracarbonyl(ferrocenylcarbin)molybdän (3): Entsprechend 3. werden 0.90 g (2 mmol) (CO)₅MoC(OC₂H₅)Fc in 50 ml CH₂Cl₂ mit 0.79 g (1.5 mmol) Al₂Br₆ umgesetzt. Nach analoger Aufarbeitung Ausb. 0.24 g (25%) rotes Kristallpulver, Zers. ab 40 °C.

 $\begin{array}{c} C_{15}H_9BrFeMoO_4 \ (484.9) & \text{Ber. C } 37.15 \ H \ 1.87 \ Br \ 16.48 \ Fe \ 11.52 \ Mo \ 19.78 \ O \ 13.19 \\ & \text{Gef. C } 37.51 \ H \ 2.01 \ Br \ 16.10 \ Fe \ 11.13 \ Mo \ 19.18 \ O \ 12.70 \end{array}$

 $\begin{array}{cccc} C_{15}H_9ClFeO_4W \ (528.4) & Ber. \ C \ 34.10 \ H \ 1.72 \ Cl \ 6.71 \ Fe \ 10.57 \ O \ 12.12 \ W \ 34.81 \\ & Gef. \ C \ 34.50 \ H \ 1.80 \ Cl \ 6.35 \ Fe \ 10.70 \ O \ 12.00 \ W \ 34.80 \end{array}$

7. trans-Bromotetracarbonyl(ferrocenylcarbin)wolfram¹⁶) (5): Analog 3. werden zu 1.13 g (2 mmol) (CO)₅WC(OC₂H₅)Fc¹²) spatelweise 0.79 g (1.5 mmol) Al₂Br₆ gegeben. Nach entsprechender Aufarbeitung Ausb. 0.80 g (70%) rotes Kristallpulver, Zers. ab 70°C.

 $\begin{array}{ccc} C_{15}H_9BrFeO_4W \ (572.8) & Ber. \ C \ 31.45 \ H \ 1.58 \ Br \ 13.95 \ Fe \ 9.75 \ O \ 11.17 \ W \ 32.09 \\ & Gef. \ C \ 31.38 \ H \ 1.50 \ Br \ 13.40 \ Fe \ 9.56 \ O \ 11.30 \ W \ 32.10 \\ & Molmasse \ 572 \ (MS, \ bez. \ auf \ ^{184}W) \end{array}$

8. trans-Tetracarbonyl(ferrocenylcarbin)iodowolfram (7): 1.14 g (2 mmol) 5 werden wie unter 4. mit 0.40 g (3 mmol) Lithiumiodid umgesetzt. Nach entsprechender Reinigung Ausb. 1.11 g (90%) rotes Kristallpulver, Zers. ab 85 °C.

 $\begin{array}{rl} C_{15}H_9FeIO_4W \ (619.8) & \mbox{Ber. C } 29.07 \ \mbox{H } 1.46 \ \mbox{Fe } 9.00 \ \mbox{J } 20.47 \ \mbox{O } 10.32 \\ & \mbox{Gef. C } 29.02 \ \mbox{H } 1.46 \ \mbox{Fe } 9.00 \ \mbox{J } 20.22 \ \mbox{O } 10.60 \\ & \mbox{Molmasse } 620 \ \mbox{(MS, bez. auf } ^{184}W) \end{array}$

[26/78]